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CHAPTER I

INTRODUCTION

This report presents a moment method (MM) [1)[ ]' solution to two-dimen-

sional (2D) transverse magnetic (TM) scattering by a variable sheet impedance in

a multilayered sla). An integral equation is derived for the sheet impedance in the

multilayered slab. This integral equation is solved for the surface currents flowing

on the sheet impedance by employing a spectral domain iMM/Green's function

solution [3]. This solution is preferred because the Green's function accounts for the

presence of the multilayered slab. Also, the fields in each layer of the multilayered

slab can be easily expanded as plane wave spectra, thus the MM/Green's function

solution is carried out in the spectral domain. A user oriented computer code was

written to implement this solution and numerical results are presented.

A sheet impedance is a model for an electrically thin dielectric layer. The sheet

impedances considered here can be variable, but they must be non-constant over

a single finite range. The multilayered slab is planar and extends infinitely in all

directions. The slab layers are of dielectric/ferrite materials which may be either

lossy or lossless. The geometry of the sheet impedance and the nmultilayered slab

is shown in Figure 1 in Chapter 11. The problem is to compute the 2D scattering

by this geometry from a TM incident plane wave.

The MM solution presentedl in this report is useful in that it allows for the

analysis of scattering from isolated scattering points and variable sheet inuped-

, F ie M N s lu ion pr se te i th s ep rt is use ulin 
th t t a lo s ort1



air ('S. For example, scatteri ig from a sigte slieet inmpedauce discmirt in it v call bc

(iiliputCel, as wvell as t;cat~lritig [rmni P tape'red sheet ilipetdairce Iheic the I

(W(1if ove a fiitr' wudl I Also., seat tfiig [rmi a finlite widuli shieet iilinpedaic'

x-ariationii In'b collipiited. Vimill. Ilire street imipelai(e iiaY hec located in i

111iittitavere l Satb. on a half tptale. o()I- it! iir[c( space. alild I Ile scatterIig fEn iii

I tise cmifigiiratiois c-an be corripidtedl.

ilihe NM1 solution is ibeglin l)V corisirerilig the sheet i ripeta rice arid 1111ilt1i

layered slab to be ill umninated by a TNt plane wave itcidenid fr in Ihe a igle

The variable sheet i mpedlance is replacedt by thte parallel cmiihina ti ()f ofi w street

ilnjedamnces. One sheet imnpedance will b~e coirstauit while the othier sheet imprje(t -

ance will be varia-le and/or constanit and will p~rodulce the sealt ered field. Next,

the equivalence tlieo)reni is usedl to replace thle "scatterig" street imntedlatice by

ant unknown surface current J,. The ('ondition that the tot at field is tire stii i 4

thre incident field anrd the scattered field yields the iritegral equationi for J,. '1Hic

uink nowni surrface current. .1, is ex paurdedl in terms o)f N k nu bla sis fuinctionurs (if

iik iiw ir st rengths. Tire N c ueflicieirts Ii thris expansion are ti err (leterinitireu try

tire nomrnt me o.The seal tered fietld is the sum o)f thre individual fields oif tire

N ba sis fun ctions mutiltied l)V thli;r reslpectivye sI, rengt. ts.

Somie p)revjots work has beeii prbl i shed on Ol Ie iiipedaice shreet app n xi ii a_

l iorr and resistive aniu imrpedairce shecet seatterirrg. llarrirrgtorr and Nlaitz t 1 pre-

seiitedl thre imipelairce sheet appro)ximiatioir aid~ applied It, Ii a IN!N sotritiotr for 'TNI

scatterinig bY a thin dlietectric shretl. Sciijor 151 c(miplrted elge-mn '[NI tbackscat ter-

iMg fromr a nilformr resistlive street Ialf plarre Ii free space. Seirio 61 atso) afltyz(l

txickscatterinig [imir tirrite widtl Ii esistiveI st i'Ips wit il at tent ion focused on lNl scat

tering near grazling incidenice. Agai., Is allatvsis cmicermned strip~s with tr ufoml

resislarree. Iticrirront 171 tpr(eseirt(' a NI NI sotii for 'NI scatter-ing by a Ijirite



width electrically thin dielectric strip. his solution uIsed b~asis functions iiic(,p)

3 ~ ~~rating known physical properties o)f the problemr geoietrY inito t ie NI NI sOI ut iui.

The NI NI solutio n p~resent ed in this rep )(rt. makes use o)f sinmu a r basis fu n ctIi S.

Newman 181 [91 uisedl a MMN/C reen 's futuct ion solution to solve for scattlerinug iw a

3 dielectric/ferrite cylinder in the presence of a perfectlY conucluctin lug alf pla ne. Thils

solu hon can be used to mod)(el a PEC lialf pla ne wvitlh a va ri ablle inimpcedanlcc t aperC

3 ~region at its edlge. Newman and Bilanchiardl 110] solved for TlNl scattering bY aim

impedance sheet extension of a. parabolic cvlinmder using a AINI/Greem s fumt ion"1

solu tion.

3 Asymptotic work employing the uniforin theory of Ii frracti mi (IT TI) I I Ih las

also been done in the analysis of thin dielectric/ferrite slabs. Ro~jas and JPathak

3[12] [131 analyzed diffraction)t by dielectric/ferrite half planes and strips. Rojas 11 11

also solved for scattering by an imnpedlance discontinuity in a planar surface. Lv

1 15] presented a UTIJ solution for diffraction by junction edges formed betwveen

3 different electrically thin material slabs. For simple cases, the MMN solution pre-

sented here was complared against the solution given in [151. Thme agreement was

3 always excellent.

The format of this report is as~ folb11)ws. The basic geomnetry o)f thei Iprolleni

I is given in Chapter 11. Chapter 11 also dlerive, the integral equation and iti(ulies

the MM solution for the sheet. impedance in the TnultilaYere(I slab. Chapter H1]

presents results of TMI plane wave scattering b~y several dlifferent sheet impedances

3 and multilayered slab geometries. NVhen po.ssible, these results were compared with

measured or previously calcula tedI results. C hiapter IN" IrieflY describes a (-I1] pujtter

3 code written to implement this M NI soltionm and is Intendedl as a uiser's manual

for the co)de. Finally, Chapter V gives a sumriary of this report, and presents Ideas

I for further study.

* 3



C11IA PTETI 11

THIEORFY

2.1 1 it ro d I I(t.it)III

This chapter dlevelops5 t he Iltegri'l equlati and illlienit liti'tho sodltifI h)r

thle pnmhlein of' 21) trnsx'rsc miagnetic ( [Ni) ltie wave scat terinig bY a varilnIc

sheet Imnpednce Ill a planlar tiult ilavered slaib. Thie sheet impiledanice rmst b~e it(Ei-

(-(list a it(over i in Iiitv range for- I lie, N I Nisoli t )IoI presenit ed Ihere. lihe sla b geolnet rY

is iliuist rated iii ligimr( I aindl a shcet, impiedarnce miodd' Is slioin ii I igiire 2.

li lt'SIut ion) Is obt an ned iw first ex pressinrg tine va ri abl e sheet im!npedlanrce as

Ohe parallel conilunatiori or I WE) shiet Iilirjnerlces. Out' shevet, Ilipedarwce will be

coust ant While the( (other sheet Imipedanece will be infiinite, coinsi nt or varialie

oVer, difrerent ranrges anid prou tces thle seat tered field. Ihe eqiivaleince I Iieu uri is

uised f() replace tine, scatterinig sliet Irnjetlarice iw an tiirknownr surface cuirrent I.

Next, tint Integral equlal jin fo. I" is Ot aiied iig thle surlface eqiii valice

thIererun o ml ie street Illilpedtarce surface. This Initegral eyuationi Is solved using at

sped t IItolnI Iilln 111 noiet inet Iho)d (NINi I)j reen'- fu nct io n so t t itnwrn vicli sol dvns for I

tie suirface cnirreiii ./,. ()unce 1 .Is k~nown i ten lie scat terecd fields are computed.

2.2 P roblem~ Geomeictry mi 111 le iitegrait Eqiu ation i

T[his sc(tol()resin J)' sVI lW l(uuiCVC1 u'iin of ani Integral t'quwtion fom- t 21) t rain

verste inagnIet IC (T [NI) stiAt erI hY at VilIitatIte sletit((aice . lio I ('Ip(I~ c c I I(( .u



in a plane multilayered slat). As illustratedl iI Figure 1, the slab) has K layers

U with permneability and perini tti vit~Y (11WOk and) thickness TA.; A, - 2.N. i

material p~arame~ters of thle free space regi( i ablove thle multi' ayere(I slatI) are de-

noted (110 (()) and( thle hoimog'-- ous re(gi' lii beloiw th li ulti Ia~vered silal) are dlenolted

I (I'GK 4-I'Ki I)- All fields and currents are two dimnensin al ( therv are Inudepen dent

(--f y ) and are time harmonic wvit. tiIhe cj't timle variation stippressedl. IT) adldi tioni

all electric fields and surface cii rrents (mnta in only a -directed comI IeOIut SO

vecto r niota tion shall ino b~le used anid this po larizat ion is imiplici t.

A sheet, in pedance Is a rw idl fo r anl electrically thi~n dlielectric slab. F' o r

example, Figuzre 2(a) shoiws a dielectric slat) of Liiick ness T' an wxith I mat erial

parameters (jt4 ), r). The wavenuinber in thle slat) is k = LC If 1k.I <~ 1,

3 then the slab is sufficienia thin that, the electric field is essentially constant with

resp~ect to z. III this case, as Illustrated in Figure 2(b), the thin dielectric slab) c-ain

ble replaced by the zero thickness sheet, Impedance I oj

IS -7 ( () (2.1)

Althloiugh Figutre 2 (a ) shows a lioniogeneous dielectric slab) if uniform t hickniess,

Equation (2.1) also applies to a stilb in which 7' and/or c are funictions of x.

The sheet impel)dances considlered lure have the property that, for some ranges

3 of x, ZS~(x) ,ZSt) is constant, while for other ranges of x, Z.5(x) is anl arbitrary

function of x. Furthernmore, the range over which Zq(x) is noni-conistanit (ZSO or

3 otherwise) must. be finite I -)a~llh w for a feasiblle sul)-d(-maiii basis funiction expa n-

sion in t his region. Some tv pical Z,,'( x) are shown in Figure 3. Figuire 3(a) shows

I ~the most, general sheet impedance wVithI anl arbitrnary variatio n for 0 < ;I <1- 1, and(

I5



Z free space

layers (I) - (k-2)

SZ = zk2 -

Z Zk-1 z (IklrcEk-l) Tkl1
z ) X ( 1 ,k-k) Tk

Y (A k+1rc k+1)

Z Z k2(A1 k±2 fk+2) Tk±2sZ Zk+2__ _ _ _ _ _ _ _ ___ _

Z ZK layers (k+3) - (K)

homogeneous (A K+lc K+1)

Figtire NI ti lt 1 a.yered slab anrd sl 'et i Ipe.dalic" ge nwi' rV.
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I,

I z

(iOrE) Ety

Et = total electric field

I (a)

I
z

I IC) (E-o) T

Etan
IEtan x s

Etan = total tangential electric field

I (b)

Figure 2: Shect impedance approximation through the equivalence theorem.
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which is constant. at ZS() or Z.,1 outside this range. For example, ill Figulre 3(b)

ZS(X) If 0 x L)IZ~q1  i f x L.

The ZS( X ) inl Figures 3(c) anid 3(d) Ii fret' fro Zun over a semi-inifiit enIge.

However, ZS(W is iion-constant. over a finite range of .7, as req uired . [it pa rticularu.

for Fignre 3(c)

Zs Z'qj) ifx < 0,23

andl for Figuire 3(d)

ZSO i f x' 0

ZZ)j' ;(.1') If I) x ' L~1 (2.4)

where Z, 1'(x ) is al im upedaurce Ca perfr I'i ctioni providing at sinot.h I ransi ti( m frm 11

ZSO to ZA over the range 0 --- .' - L.

A simplified sketch of the il tilered slab containing Z,;(a') is shown ill

Fgre -1(a). Newmiuan showed th~at thle eqiivalent sheet i umpedlanuce of a t hinii imilti -

lavere1 (liclect-ric( slab is gi veni by dic pa rallel1 combli na tioni of I lie sheet. imi1pedanrces

of the i ndi vi(I ial l avers I 101. Phuts, the sheet imnpedlance Z5( x ) can be re present ed

as thle c(onst ant, sheet impeda nce Z, fin p~arallel withI anot her sheet. in IecihmC(C, dc

tnted Zqp (;r). Thiis eqiiva lent geonittry is shiown iii Figutre 41(b). Zs (a) is gi velt

Zsr ZS Z p(r (2.5)

from which it, is found thatI Z, p(;i) is given by

Z";.r Zhozs(,r) (2.6)
Zo-Zs(x)'

8



SZs(X) Z

Z so \ / \ /
\r v

o L
(a)

step impedance Z,(x)
change Z A

_ Zso

0 L
(b)

1 step impedance Zs(x)
change ZA

Zo -- -- -- - - n

* ) x(c)

1 Zs(X

ZA
impedance taper ----------

I so i - x
(d)

I

Figure 3: Typical sheet impedance variations.
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7 .;4 total
sheet2 A;
irpedair-e /

mtrial slab lavers

(a)

Z so constant Z s) parallel

impedance impedance

Lmaterial slab layers

(b)

Zso= constant Js(-:)= surface
sheet Z current
impedance

* x

Ematerial slab layers

(C)

F'igure 4: FAJiiivaviatI g(mict rics IIse(l Mt ricrivitg f hc Ittegiral ((iatilul.
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The scattered field is produced by the parallel sheet impedance Zsp(x), which

is finite only where ZS(x) : ZS0 . As illustrated in Figure 4(c) the volume equiv-

alence theorem can be used to replace ZSp(x) by the surface current 1101

Et

J(X) Z ()' (2.7)

where E t is the total electric field on the surface of ZSp(,). Note that ,I(x) is

non-zero only where Zs(x) $ ZSO, and that Js(x) radiates the scattered field E'

in the presence of the multilayered slab of Figure 4(c). The term "multilayered

slab" refers to the K material layers and the sheet impedance ZSO, but not ZSp(x).

The total electric field is the sum of the incident plus the scattered field, i.e.,

Et = E -F s (2.8)

where E' is the field of the incident. plane wave in the presence of the multilayered

slab of Figure 4(c). Combining Equations (2.7) and (2.8) yields

-- Es + Zsp(x),JS(x) = E. (2.9)

This is the basic integral equation for JS(x) because the electric field E' can be

expressed as

Es jG (x'Ix, z) JS(x')dx' (2.10)

where G(x'Ix, z) is the component of the dyadic Green's function for the mrul-

tilayered slab containing ZSO. The component of the dyadic Green's function is

chosen because the surface current is - directed. However, the dyadic Green's

function will not be used in this analysis but is used only to show the form of the

integral equation. Equation (2.9) will be solved for Jq(x) in the next section using

the MM.

11



2.3 Moment Method Solution

This section presenls tili( development of the moment iethod soli',ion It) tHie

integral equ ation deve( peI ii the previs sect I( in . The u111k tit,, Wi stirface c i rrn 

is a)proximated by a sum of N known basis functions of unknown strengihis. I'he

('h(hice of the basis fin'tions is discussed in Sect.ion 2.8. By taking an inner priti ct

of Equation (2.9) with a set of N weighting finctions, a inatrix equation is forTIIed.

The weighting functions will be chosen identical to the basis functions making this

a Galerkin solution [1]. Finally, general expressions for the matrix elements are

given. Note that all electric fields and surface currents are y - directed so, vect or

notation is not used.

The moment method solution is begun by approximating the tinknown sirface

current JS(x) as a sun of N known basis functions as follows:

NJs W E n (2.1 1)

where the I, are the N unknown strengths of each basis function and the J, are the

N known basis function expansion modes. Substititing the appro ximate surface

current JS(x) of Equatitn (2.1 1) int, Iquati n (2.9) it, is obiained that

N N
M t. -1 __ InJ, ZSl,(.) (2.12)

I i I

where E, is the electric field of the nit h b)asis function ., radiating in the presence

tf the iultilavered slab (containing Z , 1). By taking the produ't (,f laliati io

(2.12) with each weighting function .1... for m 1,2..... N. and integral ing then

over the region (f the weighting fu nct.ion, it is (obtained that

N N
T I,, En l * j , 4 > 1 Il Ill 'fil ZC ( 1X ) 1/ *I dx. (2.13)

12
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I

The limit in on the integrals in the above equation denotes that tile range of

integration is over tile region where th~. is non-zero. Equation (2.13) represents

a set of N equations with N unknowns. This set of equations call be written

compactly in matrix form as

I 1Z + AZ] [1] = [1 (2.14)

3 where [Z + AZ] is the N x N impedance matrix, (1] is tie length N vector of 'in-

known strengths, and [17] is the length N voltage excitation vector. The following

I equations define the elements of the impedance matrix and the voltage vector:

3Zmnn , J ,, E dx (2.15)

L Zmn ...fmJ pm(x)dx (2.16)

fm E zJmdx (2.17)

I Reciprocity can be applied to Equation (2.17) to obtain an expression for the

3 voltage vector elements in terms of Em, the electric field of the rnth weighting

function Jm. The resulting reciprocal expression is

Sm = I Em Jidv (2.18)

I where J is the impressed current that radiates the incident electric field E i. The

integral is over the volume of the impressed current.

The Zmn impedance matrix contributions are distinctly different from the

3 AZmn contributions. Equation (2.15) contains the electric field of the basis func-

tions radiating in the presence of the multilayered slab. Iowever, Equation (2.16)

3 does not contain any electric fields. The Zmn terms result from the field of the

basis functions in Equation (2.9), whereas the AZmn terms result directly from

the basis functions. As a result, the Zmn terms require further evaluation, but the

3 n13



AZ.l\ t ternis cani be evaluated dir-ect iv fr uin Equat ion (2.16) f1 ir 1(11I iwn bI s and(

weighting fiuctions and suriface iii iic('.

Note that both Fquat IAis (2.15)) anid (2.18) (miln thle elect nIc fields of Iliec

b~asis fiiiictioiis and l -veiglitiiig filinct bus i-aliatiiig ill flue pn-csiceI~1 t ille iiuuil Iilav-

cl-cI Slabl. Thei. next sect bin ievvlopis ('expi-e il5 fowr thlese eluctf-ne fields aul sv

t hein hi eval uat e tihe i Ipedlance niad Irix eleliefiths.

2.4 Evaluation of the Implelafkev Matrix Eleimxents

This section olbtains ant exact Ifl egral exl-essioll for. thle ImpJedlan(e iuiaf nix

eleuieits from thle gener-al expi-essioiu given bY Equatilon (2.15) iii t lie prevceiiig

section. Ani expr-ession foyr the to)tal elect vi field of thle basis ficfiom J, n-ariat ing

inl (ihe p~re'sence 14 f lie nini 1f ia ele! Slali wvill be developed usin tihfle planle wave

expanusion llinetlol 1 61. Thiis eXIlcieboiil vvilI be !!sC(! ill thle e'vallnat.ion 4 t lie

atrix elements of 1Hjnalt us (2.15) and (2.18). This section evaluates l'quiat ion

(2.15) inl the spect ral dlomnain.

A sepTa rate plane wave expansioin fo in the fields is uitsed inl eac cl aven- (4 thle

slab. iii t he frece space region abIove Hte Slab, anid ilil Ill( lmit geiue )1 s regi(l uu uh i

thle sl ab. Thus, for a. K I a vered sl ab t .here wvill exist K 12 separa-te regn ins, ea cl

wvith its ( wn planle wvave expansion. hit .I.lefolh )71vi fig arna Vss t he tin ta tin foii OwinIi

5ffusc i-ipt, an fi~Si ptc'i-s)1 k is:

" k - 0 imnplies the Fr-ee space i-egi ii abo~ ve t lie mu i I. ilayered slab,

" k~ 1,2,..., K implies tlue 0"' laYe- of flue tmultilaYer-ed slab, and

" A- K I I impl~ies flue limmiogceous nevgiol belomIli i'Iuiti(lavef'edl Slab.
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I
The basis functions J, are assumed to be Fourier transformable with the

Fourier transform pair defined as

j ,0 , eIJox dx (2.19)

I - 0 j: eTjo dJ3. (2.20)

4 are referred to as the "plus" and "ninus" Fourier transforms of J,t.

The surface current lies on the interface between two regions so each region

3 can be considered source free. Thus, the electric and magnetic fields in each region

must satisfy the source free vector wave equation

(V2 4- k1 2) n O (2.21)I
where kk = wVi.k is the wave number of the kth region. The total po-

I larized electric field in region k, produced by Jn radiating in the presence of the

I multilayered slab, is expressed as a. continuous spectrum of plane waves, i.e.,

E (X, Z) K0 A' (0)3 Ikz+ ±B'(fl) e-kzI ej~xdo3 (2.22)

where Ak(fl) and Bk(/3) are spectral weighting functions to be determined, and

I yk is a propagation constant for waves travelling in the z direction. Applying

Equation (2.21) to Equation (2.22) yields the separation equation

k ; Ite(Yk) > O,Ini(-k) > 0. (2.23)

This relates the propagation constant Ik to the plane wave spectrum parameter

I3. The conditions on "k insure that the wave decays in the direction it travels.

In this manner, the term of Equation (2.22) associated with Ak(/3) is an upward

15



travel lit ig wave at I (thle ter li associaitted wit It J3, (,3) is a (h wiiwa rd I I.av c IlIi I I g wve.

Ex pressi us for thle magnetic field aric obt a ined fromi MIaxwxel l!" eq lita I

A\pplyinig Eqiiatioi (2.2,1) to Fiqiiatmi (2.22) the( Following magnetic field Is ob--

t ali ed:

Next, th funcl fiiIitiis 111;( 1 and lj) munst be deterin11ed. Thlese (ciiie WI1

ale (( dcerlriied bY enforcing tielt' 1,wiilg cmiit ions (mI thle fields:

I. thec radliatioil voIllitll Wit VS I 'XK

2. (oi)it i iit I ) I li( f a igent ial I c e lec ield( a crs t- aeS li iteIcrfa ce.

:1. ('oilitliiitY ()f i lie taiigeiil al mnagnetic field across each Interface except tile

z 0 Initerfa ce. and (

.1. (jSUolfltfillt 4f thle 1 atigeiit al imagnetic field, l)V ft( ltoal smiifae enrreci

prod niceri bY J1, aei's filie () i1iCIi eface, i.e.,

yj1 1kI ( 12.27)

where A, atid k l I represent t he re('gionns itlintierialt ly a hove anid below t he

z 0) inter-face reSpectivelv. and .11, Is ille totall surlface cuirrent prmillced 11

'I?16



Jt contains only a - directed component which at the z =- 0 interface can be

written as
in -- ,,o) 7, j (2.28)

Zs( 7,) Zs0

In Equation (2.28) Ek+; could have been used instead of Ek since the tangential

electric field is continuous across the z - 0 interface.

Enforcing the above conditions on the fields of Equations (2.22) and (2.25).

and substituting Equations (2.20) and (2.22) into Equation (2.28), the electric field
Enk is obtained in terms of Jn. In Appendix A it is shown that the electric field at

the z = 0 interface is given by

k +0_ 0 o
En(X,0) 2F(,J) iJn eJx d13 (2.29)

where F(O) is a spectral function specific to the multilayered slat) geometry. F(O)

can be viewed as a spectral domain Green's function. See Appendix A for the

determination of F(O) for several simple geometries, such as the sheet impedance

located in a K = 2 layered slab, on a material half space, and entirely in free space.

The impedance matrix elements are obtained by substituting Equation (2.29)

into Equation (2.15) to obtain

7, j / F(13) J- e j,, di dr. (2.30)

Reversing the order of integrations, and employing the Fourier transform relation-

ship of Equation (2.19), it is finally obtained that

dIf4 F(Ol) i, J- di. (2.31)Z 27 -oo

This is the so-called spectral integral formula for the impedance matrix elements.

This integral expression is preferable to using Equation (2.10) in Equation (2.15)

because there is only one integration. Furthermore, the dyadic Green's function

17



for the iiult ilavered slalb need notl be letcriujined. fhowever, i lie firi ii li VA)

iist lbe udetermrinied. Note tHim (Iilriiiiiig o ic iiij(latl( miat rix eeiei Fr,-

lhI IIIs. ( II Ferci se I IISpc a mI fundI ( ( 1 S/'(AH) caif lhe iisedl For (III rrent gtoifIiet ries

2.5 Nhimiiricil fivaliiitioniof l the Ihpedmaice N1,4trix

Thie Iimpedance fialI X e'(leents giveni by E(Jlia~ilmi ( 2.31 ) wilhl be evahizated

fil ictri calIlv. Ther'e are, I W( prob~lerls eliUoiifiteredl ill thle filificiecal ('vilhlilat 1(

4f illie intipedance inatrix. Thie first proliletn is thl ( l IT lirne re(Iiiir-ed for tlhe

coiiilIatimon of the Imipedance iiatrix. 'I'lle sconmd problem is that surface wave

poles, produlce sinigularities int ilie ititcgramid of the( spectral integral 1 0riiiul1a. This

sect ion disculsses t hese prolemlrs.

2.5.1 CPTJ Time Redcl itioni

11wl( spect ral Integral 1orimila foir thle impi1 edanice matrlix elciniims Is giveii loY

F~pltioli (2.31). Noting I lie, formn of f ie( ('(pilaljoi, tl(, rcidua~~i~tion (i4 I lie a

ulatitieis cani be elimiiiIImated bYv coniput ing all tilie elements inl a parallel fasloi.

Hums. thle eiit ire Imipedlance matrix shotild he compl~uted~ ill .just (111V 11MICIAiieal

integral iou wvi Ii amat rix iiltiplicamt o pcrI ormiied Iniside i lie Integral, i.e..

ZA'I /A_2 . 7 .. Z"(H * V ~ . ~]e~

(2.312

N~ote thatl Ill tisl- evalliaition of I lie iumupe-dmcc itat rix. i the hlmlamIlIties v'( 3),.1",

an .1P rc evahmiateu (,Il.\ mice at eclI vilie oif I eilmlovecd llIh 111cia

anl . ii I li ..........a



integration. This results in an immense savings in CPU time requi red for the

impedance matrix computation.

1 2.5.2 Surface Wave Poles

The spectral function F(3) in the expression for Zm,, of Equation (2.31) may

I contain poles which make the integrand singular. l)hysically, these poles corre-

spond to surface waves that exist on the multilayered slab containing the constant

sheet impedance ZSO. The number of surface wave poles can increase with in-

Screasing frequency. Typically, for lossless layers, these poles lie on the Re(13) axis

between k0 and kD7 1 a - the maximum wavenumber of a layer medium. For lossy

I layers, these poles will move into the second and fourth quadrants, but for only

slightly lossy layers they will be close to the Re(83) axis. If the poles are close to or

on the Re(O) axis, they will distort the numerical # integration for Z, unless the

3 integration path is staggered around them as shown in Figure 5. This staggered

contour will produce an accurate result since the staggered contour does not cross

3 any poles, nor does it pass too closely to their singularities. This staggered contour

method has worked well for A given by

-0.2 f I < 5,Dmin (2.33)I AD"Dm/IV otherwise

3 where 11 is the width of the pulse basis function region and ADmin is the wavelength

in medium kDmar. The contour then returns to the Re(3) a.'s around 1.2kDa,.

I 2.6 Evaluation of the Voltage Vector Elements

3 This section obtains an expression for the voltage vector elements from the

expression given in Equation (2.17) for the case of a uniform incident plane wave.

The geometry of the incident wave is shown in Figure 4(a). An impressed current
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-Plane I M (J?)

~kI~nr~ -fRe ( j)

44

poles

Staggered path for
numerical integration

[igiirc 5: liitegratili rl i; For z i i II A

swircc thbat rarflliates a plant' wave Ili I h fill zon- Ii free space will bc dlefinied so thlat

thc reciprocal exrpressioii of Fl(quiatioiu (2.18) can lbe used. Fi at al e-xprc-ssn(t nFt'

flie far zone field o)f a basis Fintct ion radial ing ill thel( pres('iice o)f theimu 1111ilavert'd

slab) will be o)btainled. '[his far Zone field1 expression will be itse l i thle evaltiat ion

of l( 1 at ion (2.18) andt also inl thel( cotputtit f the far zotic scat tere1 field. 11w

forittlation oiltlincd ihere assimies t hat the wvave is inucidlent Front I lie tipper hialf

space z , 0. A simiilar approachl canl he u~sed If I lie wave is inlcidenII t.l FrI the)o(e

half space.

11we Incident, plane wave ditntituatitug flue tiltilaveretl slab) Is

1.' 1 .1 kf).X (( Su h 4 SillfId(1 ) (2.31)

Tihlis field wviil be prdcdbY il inipressed cnritlint, source(.

f 1- (2.35)
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I

located at the point (p,0) in the limit as p --4 oo. It should be noted that the

I strength of j depends upon the distance p, so that E has unit arnpliit(dc near

the origin.

Substituting Equation (2.35) into Equation (2.18) it is obtained that

N U~~~~rnEm 8rj e~TV~Jo (2.36)
WLO)

l where Em is the field of Jm evaluated at (poi), the location of the imjpressed

current source j. The method of stationary phase is used to asymptotically

evaluate Em [17] [18] in Appendix B. Em is found to be of the form

Em -iPm(C0 ) e--kp (2.37)

where Pro(0 0 ) is a function of 00 dependant upon the multilayered slab geometry.

See Appendix B for the evaluation of E, for several simple geometries. Substitut-

Iing Equation (2.37) into Equation (2.36) the voltage vector elements are found to

be
I' -- Pn( 0 -q (2.38)

Wit()

IThis completes the discussion of the calculation of the voltage vector elements.

2.7 Computation of the Scattered Field

Once the impedance matrix and voltage vector are known, the current vector

can be obtained using standard matrix algebra. Then, once the current vector is

known, the far zone scattered field can he obtained as the sum of the far zoine field

of each basis function J, multiplied by its respective strength I,,. Thus. the far

Izone scattered field is be given by

N
I > ,EO (2.39)

n=l
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where I, is fihe sirenigtl of .1, and I"" is the far zome fieldh ,f .1, radiatitg in Ilie

presence )f Ihe multilayered slaib. '['li, far zone filhl ,f a basis functihn is dIcter-

mined asviilpflically in Appendix It and is given by I'kclaliol (11.5). Siibstiltidig

Equat~ion (11.5) intl) iquatioi (2.39), Ilhe scattered lield is fiind ih w

N , .jA-(,pN, (2.10)

71 -1 I ~ p

where P,(fi) is depeiidat iiio the iiultilayered slab geomet ry and is als( determined

in Appendix 11 and is given by Equation (13.6).

2.8 Basis mid Weighting Fuictions

This section discusses the basis and weighting fittictio,,s used ill til M s,-

Ititioti. The weighting functims are clioseit identical to the basis functitis making

this a. Calerkin solution. It will be explained how the choice of basis fuictioiis

is determitted by the nature of tre shed.i ip)edan.fCe Z,,(;r). All basis fuinctiois

are Fourier transformable, as required by the spectral integral formula. for the im-

pedaice matrix elements. The basis fitunctions and their IOrrier transfrms are

presented below.

Recall that the surface current J,,s(a) is non-zero in the range of z where

ZS(x) / ZSo. Therefore, Is(x) imust be expanded in terms of basis functions in

this range. Furthermore, the range where Z(,(x) / Z,q0 can be either finite or

senii- oirt iie. flowever, t)e raiige whiere Zs,.,x) is non -C mistitnt iiist lie finite to

allow for a feasible sitiscliional basis fimcti<,u expansi,,n ill this range.

ligitre 3(b) shows a case wiie Z,(.-) / Z.s. ove a liile range of ;x. Il fhis

case, .';(x) is expanded in so bsectioial basis ftinctionsover Ihis range. I'ulse fuic-

tions are chosen as the subsectional basis fiuctions in this MM solution. Figures

3(c) and 3(d) show cases where ZS(a,) J aS0 over a semi-infinite range of x. In
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these cases it. would be impossible to express JS(X) as an expansion of silsectional

basis functions over the entire seni-infinite range because N --- oo. To circilmvent

this problem, JS(x) is expanded in terms of pulse basis functions only in a,,d near

the range where ZS(x) is non-constant or discontinuous. hn addition, ,1/-(X) is

expanded in terms of physical seni-infinite domain basis functions outside of this

range. A physical basis function is a basis function with a variation dependant on

a physical characteristic of the problem geometry. These basis functions incorpo-

rate known variations into the MM solution. Thus, some insight into the problem

is required to choose this type of basis function. For example, a. physical optics

(PO) basis function is chooen to account for the current variation induced by the

incident plane wave. Also, surface wave basis functions are chosen when surface

wa.ves can be supported by the sheet impedance. These are the two types of phys-

ical basis functions used in this MM solution. They are semi-infinite domain basis

functions because they extend to infinity in the +i - direction. It is assumed that

the current far enough away from any non-constant variations or discontinuities

of ZS(x) can be approximated accurately by only the PO and surface wave basis

functions because Zr(x) is constant in this range.

Figure 6 shows the choice and placement of basis functions needed for a proper

and complete expansion of JS() for three typical variations of ZS(x). It should be

noted that in Figures 6(b) and 6(c) surface wave basis functions should be included

only if the multilayered slab geometry can support surface waves. However, surface

wave basis functions need not lbe included (even if the geometry can sitpport them)

if the surface wave decays to insignificant strength in the pulse basis function

region. If the slat) layer is lossy enough, or the surface wave propagation constant

provides rapid enough attenuation, then this will be the case. In these cases, tlhe

current variation near the non-constant or discontinuous sheet impedance, caused
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I)' filie at teiiiiatC( surtface wvave. w'ill be1 apI)HXiIrlaitvd well ('c ligfl by t'lit Ifillse

bfasis fun~ctionis aliric.

If I he range where Z.". x ) ,.,, is- finlite. I hl jrISc bas'is fillict ]MIS1 areC ii5fiI

m~f ile eit' Iire ranlge. If sx / /q over[ it seirii itrfiuiitc rarrg'. 1.11(1 1 filli.

art, ared Ill ardi hl it' e I'lpt %llvr Z si' 5~~

(Ilsc(fIltlllll(IS, C~ I lI(' arte ised l f a\ fiaig starting whlere' Z.s( .) first deviates

frmoii ~ andl erililg far ernough heyonld where /4x)has Ieorn'(ilt.c i lalt

again that j~j(x) earli bie apjpr~xinatedl bY 011lY the PO( and sulrface' wave bfasis

fmnctions. In either caise., Ihe range where Isx)is e'xpandled ili terms ()f p)ulsek

b~asis funictionfs Is fiflit('. Th'lis finiite- range is divided into( NV segmients and~ a 1) 1lse

b)asis firiictioii is placed onI each segmreint . Thle pulse basis frictioris are of I li( foriii

0 f Alierwi se.

Applying the Fourier t ranusforim 4f Eq nation (2.1I9) to t he ptrilse basis fir ri t tols.

the tranisforms are fnid to be

H 2

whlere J." is thle cetet(r ol filie 1 /bStegmen'it anid Ill is f ie widlth of i lie 111 segnit'ru

The P~O basis funrrtioii is Iused wvlieri /,,(x) I/ Z. ( over a s('Iii-iifitilit range.

It is uised to lmdel thre current viation irnducedl by a plane w\-i\,( Irncidhent (fri a

c( uista nit -,]eet iimped anrce. 'I'llre x 'a ri at im f ftlie incident 1)1a ire wave Is cejko- tos t(u

where (/)(I is filie angle 4fiiicid1erie i'. thle Pf() basis funictionl is clroseir to be

(N j .t"If 1 ,11 2.13)

0 (ft lierwrSe

where Jr' pl(I is I lpicallY 0t or I lie vale of .x \N here t Ire' purlse ba)sis firlictionis Stopi. I f

lilt free sima(( rt'g~m A, is v'icved ats at slightlY mos'ietdia ili t lie limit ats f lit
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U step impedance pulse
change -ZA

Z _so L_-_-_-_- - - - -I o ,L x
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surface
pulse wave
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-. x
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Figure 6: Choicc of basis functio,,ns for typical ZS(x) variations.
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loss vanishes, then J, will be F(urier transforinlable wit il I ralisflrui

,13 1 Cos (2. 1)()

.( . A' cos h)

Note that te P() basis fitictioti depends on the incident angle / . Therefore,

each t itle the incident angle chanlges. as in i backscatter pattern coali p at a l,

the iupedance madix chaiiges. ,Mrc s)('c fhially, as (,g changes, lie rows and

colu iins of the itii)eda lce matrix associated vith lie () I asis fiict ion must be

recoII1ptlted.

The surface wave basis fiunctio,| is also used whet Zq (x) / Z,,;, over a semi-

infinite rangt. IHowever, it is iised(l only when a surface wave caii be support'd l)y

lie nllltilayered slalb geouelrvty. Recall that if a surface wave exists and it decays

cIiiickly (nmligh. then a surface wave basis filmction d(les not need fo) be iincl(llcd

for that surface wave. TliC surface wrave Ibasis fiitcti)ii is used i.(to m)del lic ciirreun

variation asso ciated with a surface wave. "Iamiuclied" firm Ilie deviation ('f Z.,, (r)

from ZSO, which travels in the 1 ;1 - direction. In general, iore thai ome stirface

wave can exist. If a. si,rface wave is lanitched, it, will have lie following x varia lii:

C w he' vIie re { (e 
(.; )

I1 s < 0

where Jh,; is the strface wave propagation constant. The coniditi on "i 501S illsll'(.

that the surface wave decavs as it t ravels in the J a' - direc im. The surface wave

basis fuicth'tiin is chose i to be

.1,, (2.1 G)
t oI lcrwise

wh('re ;r,- is lypicallY 0 (r Ihe, value" of x' herc t I pulse basis functlos slo). .J,

is loiirier transformable with I lie I rauisfortn
- ?I I >,,).r5

.1' .(2.17)
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To use surface wave basis functions, the surface wave propagation constants

I must first be obtained. However, it should be noted that surface waves will not

always exist. If they do exist, the surface wave propagation constants for a mIul-

tilayered slab geometry are the poles of the function F(Ol) where Z, 11 is replaced

by the sheet impedance the surface waves exist on. F(,3) is given in Appendix A

for several multilayered slab geometries. II general, solving for the surface wave

poles will result in a transcendental equation which can be solved numerically. The

surface wave poles must satisfy the conditions stated in Equation (2.45). When

choosing surface wave basis functions, those associated with propagating and slowly

decaying surface waves should be chosen first since they are the dominant modes.

In this MMI solution, surface wave basis functions are included only in the

case where ZS(x) ;s entirely in free space, i.e., no material layers exist. However,

surface waves cannot exist on a mrely real sheet impedance in free space 1191. In

I Figures 6(b) and 6(c), if lm(ZA1 ) 0, then a surface wave will travel in the 4 -

direction along ZA. In this case, solving for the poles of Equation (A.20) where

ZSO-- ZA, the surface wave propagation constant is found t., beI
.VY .jZ2I (2 .48)

where Z0 = V is the characteristic impedance of free space. The root of Equa-

tion (2.48) is chosen so that the conditions of Equation (2.45) are satisfied.

I
I
I
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CHAPTER III

NUMERICAL RESULTS

This chapter presents results obtained from the MM procedure outlined in

Chapter II. The results include computed backscatter from various sheet in)ped-

ances and multilayered geometries. The results are compared with measurenieiits

and previously calculated results.

3.1 Convergence and Current Distribution Results

This section shows convergence data on the echo width scattered I)y a perfectly

conducting half plane for edge-on incidence. Figure 7 shows the edge-on echo width

versus the width of the pulse basis function region, labeled W in the figure. 'File

PO basis function is required. The frequency is 300 MHz so that A = meter.

Each pulse basis function is 0.OA wide and the W is varied from 0 to 3A. 'ihus, the

number of pulses varies from 0 to 30 pulses. It can be seen that the echo widIth

converges to within 0.25 (13 of the exact value at a pulse region width o)f about

IA. This appears to l)e the best this MM solution can do for a pulse basis functioti

width of O.1A. If greater accuracy is desired, a. smaller pulse width can be used.

Figure 8 shows the edge-on echo width versus the width ,I tile inudividual plulse

basis functions, labeled T) in the figure. Once again, the P() basis futi ,io is 1sed

and the frequency is 300 N Ilz. The pulses are placed over t he first wavelength (\W

A A) and D is varied from 0.033 to 0.25. At D=-0.033 there are 30 pulses and at
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I
D=0.25 there are ,4 pulses. The MMIl solution converges nicely, thus demonstrating

I the accuracy of the solution.

The MM current distribution for a typical basis function expansion is corn-

pared to the exact current distribution on the PEC half plane [51 in Figure 9. The

3 MM current distribution uses a PO basis function starting at xp -- 0. Also,

10 pulse basis functions of width 0.1 A each are used over the first wavelength of

the PEC half plane. The frequency is 300 MHz (A = 1 meter) and the current

distribution is plotted 'over the first two wavelengths of the half plane. The MMkl

I and exact currents are in reasonable agreement with one another. For the range

0 < x < the current consists of pulses superimposed on the PO current, thus

giving the distribution the slightly modified staircase shape. For x > A the current

distribution consists only of the PO current. This can be seen in the constant

magnitude and linear phase of the current in this region. It is interesting to note

I that the MM current at the center of the first pulse is about 1.44 times the exact

current at this location. The exact current has a. dependance near the edge of

the half plane. The average value of the exact current over the first pulse width

divided by its value at the center of the first pulse is x/ 1.41. Thus, despite the

appearance of the current plot, the MM current distribution does a very good job

I of approximating the exact current over the first pulse region.

3.2 Backscatter Versus Frequency Results

This section presents a comparison of measured backscatter from a sheet, im-

pedance located in a K -- 2 layered slab with results obtained from this NINI

solution. Measured and computed echo width versus frequency are compared.

The MM computations were obtained using an impedance matrix interp ,la)tio

I method [201. The inserts in Figures 10 and 11 show the multilayered slab geonle-
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W = width of pulse region
0.1i = individual pulse width
f = 300 MHz ( = im)
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Figure 7: Convergence curve showing edge-on echo width versus )ulse region
width for PEC half plane.
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I

try analyzed here.

I The geometry consists of a sheet impedance like that shown in Figure 3(b)

given by Equation (2.2). Referring to Equation (2.2) the sheet impedance is defined

by ZSO = 65Q and Z A - 0 or ox. The finite width where ZA exists is L - 7.62cm.

This sheet impedaaLce is located in a K = 2 layered slat). Both layers are lossless

and have permeability ,I0 a.nd relative dielectric constant Er = 2.6. The thickness

I of the layers is T - T2 - 0.57cm.

Figures 10 and 11 show plots of measured results compared with results ob-

tained from this MM solution. Figure 10 corresponds to Z4j oo and Figure 11

3 corresponds to ZA = 0. The figures show backscatter versus frequency at 0 = 300.

The MM computations were made using impedance matrix interpolation. The im-

I pedance matrix was computed every Af = I GHz and echo width was calculated

evryLf 5Mh.33 pulse basis functio ns were usedl in the range from 4 to 8

r GlIz and 50 pulse basis functions were used from 8 to 12 GHz. This corresponds

to a pulse width of about .liAr at the highest frequency in each range where AD

is the wavelength in the dielectric layer. The solid curves are the calculated data

and the dashed curves are the measured data. The results agree reasonably well,

especially for Z A1 - oc. The data took about 22 minutes per plot, to compute on

I a VAX 8550.

3.3 Backscatter From a Sheet Impedance in Free Space

This sect ion presents backscatter frorm a. sheet rimpedawice half plane in free

space. The geometry is sketched in the inserts of bigures 12 and 13. Several

values for purely resistive and purely reactive sheet impedances are considered

with l)ackscatter patterns of their echo width included.

Figure 12 shows the computed backscatter echo width of a purely resistive

33



I IB II II 1 1 11 1 I 1 , I Iii I i i i i

L=7.62cm
T=0.57cm z

300

0 T Er=2 . 6 x

T Er2.6 / L

to

CD z Z. = 00 ZS.=65

~~31

0~
MN

L()

33 pulses at 8 GHz
50 pulses at 12 GHz measured-

'4 5 6 7 8 9 10 11 12
FREQUENCY (GHz)

Fignre 10: lBackscat ter by a shect imtpedance located in a two layvered slab.
ZS(I 6J511 andl Z.4 -- o.

3]1



L=7. 62cm
T=O. 57cm

I z 300

IL
TCe- 2

T Er 2'.' 6

m -33 pu s s t 8

Figure 1H: Backscatt er by sIico, iminpeda nce loa ted in a I W() avercd slab.
6i511 and /Z 0

I3



sheet impedance half plane in free space. The sheet impedance is o)f the f,rri

shown in Figure 3(c) given in Equation (2.3) where Zq) 0o ard Z A - ,

with R, - 0,100, 500. 2000, 101Q. The echo width is given in d(1-m an(] was

calculated at 300.0 M liz. There were 10 pulse basis functions (of width 0.IA

10cm each covering the first wavelength of the half plane. utirthermnore, ile P(O

basis function (starting at xr, - 0) had to be included, making a total of 11

basis functions. No surface wave basis function was used since a. purely real sheet

impedance cannot support a surface wave. The edge-on backscatter at rh(I 1800

is in excellent agreement with values previously calculated by Senior [5[. These

points are indicated as large dots at 1800 in Figure 12. Also, the iM restilts

computed here check out very well against the asymptotic results of Ly [151. Plots

comparing these results were too similar to include here. The data in Figure 12

took about 28 minutes of CPU time to compute on a. VAX 8550.

Similarly, Figure 13 shows the cori pluted ba.ckscatter echo width of a purely

reactive sheet impedance half plane in free space. The sheet impedance is of

the same f)rm given in Equation (2.3) where Zq0 = o and ZA - jXS with

XSq = 0,100, 500, 2000, 10"Q. The echo width is given in dB-im and was calculated

at 300.0 MHz. There were 10 pulse basis functions of width 0.1A - 10cm over the

first wavelength of the half plane. The imaginary sheet impedance can support

a surface wave so the surface wave basis function was included. It started at

xS = 0 and had propagation constant given by Equation (2.48). With the PO basis

function, a total of 12 basis functio,S were used. The imaginary sheet inmpedance

scattering results also check out very well wit It the work (of Ly 1151. The data in

Figure 13 took about :11 ni1nut(es to conipuie (oin a VAX 8550.
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I
3.4 Backscatter From a Tapered Sheet Impedance Half Plane in Free

Space

This section presents results of backscatter from a tapered sheet impedance

I half plane in free space. The geometry is sketched in the insert of Figure 14 and

the sheet impedance variation is described below. Backscatter patterns of echo

width are included for several different linear impedance tapers. Also, backscatter

patterns from a linearly tapered and a exponentially tapered sheet impedance are

compared against results from Newman [8] [9].

I The sheet impedance variation is similar to that shown in Figure 3(d) given

by Equation (2.4). The sheet impedance tapers linearly from 10000 to 00 over

the width L. For x > L the sheet impedance is zero, i.e., a perfectly conducting

3 half plane. Referring to Equation (2.4), the sheet impedance considered here is

given as

ZS(x) = 1000 (1 - if 0 < x < L (3.1)1 0 ifx >L.

Backscatter patterns were computed for L = 0, A/4, A/2, A and 2A. The backscatter

patterns of echo width in dB-m are shown in Figure 14 and were computed at 300

MHz. In each case, pulse basis functions of width 0.05A were placed over the

impedance taper region and the first wavelength of the PEC, i.e., they were used

3 from x = 0 to x = L + A. The PO basis function had to be included and it started

at xpO = 0. The data of Figure 14 took about 145 minutes of CPU time on a

VAX 8550.

3 For comparison, backscatter patterns from linearly tapered and exponentially

tapered sheet impedances were compared with Newman's results. The width of

the impedance taper region is L = A in both cases. The linear impedance taper
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Figure 14: Backscatter by a linearly tapered sheet impedance half plane in free
space.
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I

is that of Equation (3.1). The exponential impedance tapers from 1OOO to 10Q

exponentially and is given as

0 -4.61(x-L)/A ifx < 0

Zs(x) 1le-  if 0 < x < L (3.2)

1 0 if x > L.

3 Figure 15 shows the results of this MM solution compared with Newman's results

for both impedance tapers. The results are in good agreement, thus demonstrating

the accuracy of this solution.

3.5 Backscatter From a Tapered Sheet Impedance Discontinuity in
Free Space

3 This section presents results of backscatter from a tapered sheet impedance

discontinuity in free space. The geometry is sketched in the insert of Figure 16.

I The problem considered in this section is similar to that of the previous section

with the main difference being that the "background" impedance ZSO is 1O00Q

instead of infinity. Ba.ckscatter patterns are included for several linear impedance

U tapers. Also, backscatter patterns from a linearly tapered and a cosinusoidally

tapered sheet impedance are compared.

3 The sheet impedance tapers linearly from 100Q to 0Q over the width L and

can be given by

I100 if x <0

Zs(x.) 100(1-) if0 <x < L (3.3)

0 if x > L.

5 Backscatter patterns were computed for L = 0, A/4, A/2, A and 2A at 300 MHz and

are shown in Figure 16. In each case, pulse basis functions of width 0.05A were

I placed from x = 0 to x = L +A. The PO basis function had to be included starting
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Figure 15: Comparison of backscatter by Iinearly and exponentially tapered sheet
impedance half planes in fiee space.
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at xpo = 0. The data of Figure 14 took about 145 minutes of CPU time on a

VAX 8550.

A cosinusoidal sheet impedance taper from 100SI to 0P of width L = A was

I also analyzed. The cosinusoidal impedance taper is given as

3 ( =- 50+ 50osq) ' for0 <x< (34)

3 The backscatter from this impedance taper is contrasted with the linear imped-

ance taper of the same width in Figure 17. Both sheet impedances had the same

I basis function expansion of 40 pulse basis functions of width 0.05A over the first 2

i wavelengths. Both cases also used the PO basis function.

I
I
I
I
I
I
I
I
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Figure 16: Backscatter by a. linearly tapered sheet impedance discontinuity in
free space.
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CHAPTER IV

DESCRIPTION OF COMPUTER CODE

This chapter describes briefly a computer code which implernents the MM

solution outlined in Chapter II. The computer code has been named the "ZS(x)"

Code (ZSX) by the author. ZSX can analyze the three multilayered slab geome-

tries considered in Appendices A and B. These geometries are a sheet impedance

located in a K = 2 layered slab, on a material half space, and in free space. ZSX

can calculate bistatic or backscatter patterns, current distributions, and frequency

sweep data. The inputs and outputs for ZSX are explained in this chapter.

4.1 Input and Output Files

ZSX utilizes one input file and two output files. The input file, INFIL.I)AT,

contains all the input data to ZSX, i.e., all the input data are read from IN-

FIL.DAT. INFIL.DAT must be assigned to logical unit 8. The first output file,

OUTFL.DAT, contains the output of ZSX. After a run, OUTFL.I)AT contains

the input data used in that run, the problem geometry and basis function expan-

sion used, and a tabular listing of the electromagnetic calculations if any were

made. OUTFL.DAT must be assigned to logical unit 9. The second output file.

PTPLOT.DAT, contains tabular listings of the electromagnetic calculations. PT-

PLOT.DAT is intended for plotting purposes. PTPLOT.DAT will contaii either

a bistatic or backscatter pattern, a current distribution, or frequency sweep data.
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C
C READ 1

c READ(8, *)NGO, IWRZM, IWRC, IGMTYP, 
IMF, IMS, IMP,NSH, BTMAX, ICALC

C READ 2
READ(8, *)F

C READ 3A
IF(IGMTYP.EQ.2)READ(8,*)ERI,TDE1,URI,TDM1

C READS 3B AND 3CIF(ICJ4TYP.EQ.3) THEN

RED(8, *)ERI,TDEI,URI,TDM1,T1
READ(8, *)ER2,TDE2,UR2,TDM2,T2

ENDIF
C
C READ 4A

READ (8, *) ZSO, ZS

C READ 4BI R READ (8, *) ITP, ZA, ZB, WDI

C READ 5
READ(8, *)WD2, SGXW,Xl,X2

C
C READ 6A

IF(ICALCEQ.O)READ(8, *) IPAT,DPHI,PHBST

C READ 6BIF((ICALC.EQ. 1) .OR. (ICALC.EQ.2))READ(8, *)FMC1 FMC2, DFZDFC,

3 &PHIN, PHSCC
C READ 6C

IF (IPAT.EQ.3) READ (8, *) XI, XF, XSI
3 Figure 18: The FORTRAN READ statements in ZSX.

PTPLOT.DAT must be assigned to logical unit 10.

4.2 Input Data

I The input data to ZSX are explained in this section. The input data are

3 used to describe to the program the problem geometry and indicate the desired

electromagnetic calculations. The input data are obtained via FORTRAN READ

Sstatements. The READ statements and the parameters defined by them will be

explained in this section. Figure 18 shows all the READ statements contained in

I ZSX. Note that not every READ statement will be executed in every program run.

The input file, INFIL.DAT, contains the data to be read by the READ statements.
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4.2.1 READ 1: Run Control Parameters

READ I defines the following run control parameters:

NGO - run indicator.

= 0 implies input and print out problem description and then stop, i.e., (h,

not make any electromagnetic calculations.

= 1 implies input problem description and then perform the (lesired electro-

magnetic calculatons. An NGO - 0 run should precede an NGO = I rin as

this allows the user to verify the accuracy of the problem description defined

in the input file, INFIL.DAT.

IWRZM = indicator for writing the impedance matrix to the output file.

0 implies do not write the inipedance matrix to the output file.

1 implies write the impedance matrix to the output file. Note that this

will result in N 2 lines of output. Furthermore, the impedance matrix will be

printed at every angle if a physical optics (PO) basis function is used and a

backscatter pattern is defined.

IWRC = indicator for writing out both the voltage and current vector.

0 implies do not write out the voltage or current vector.

1 implies write out both the voltage and current vector. Note that for

backscatter patterns this will result in the voltage and current vector being

printed at every angle.

IGMTYP = indicator for the type of multilayered slat) geometry.

I implies a sheet impedance in free space.

2 implies a sheet impedance on a material half space.

3 implies a sheet impedance located in a K -- 2 layered slab.
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IMF indicator for using a physical optics (PO) basis function.

= 0 implies do not use a PO basis fu on. Use this in the case that

ZS(x) y ZSO over a finite range of x.

1 implies use a PO basis function. Use this in the case that Zs(x) J ZSO

over a semi-infinite range of x.

IMS = indicator for using a surface wave basis function.

= 0 implies do not use a surface wave basis function.

= 1 implies use a surface wave basis function. IMS should be set equal to

1 only if: 1) the sheet impedance is NOT purely real and is in free space

(IGMTYP = 1), and 2) the range where ZS(x) A ZSo is semi- infinite. ZSX

allows for only one surface wave basis function for the case that the sheet

impedance is in free space. ZSX computes the surface wave propagation

constant according to Equation (2.48).

IMP indicator for using pulse basis functions.

- 0 implies do not use any pulse basis functions.

- 1 implies use pulse basis functions. This will almost always be the case.

NSH = number of Simpson's rule integration segments used per half cycle of

the oscillatory part of the integrand of the spectral integral expression for

Zmn (Equation (2.31).) NSII = 4 typically but can be increased for greater

accuracy.

BTMAX = upper and lower limits of integration used in the expression for Zmn

in terms of the maximum wavenumber of the multilayered slab materials,

i.e., limits of integration for Equation (2.31) are ±BTMAXxkDma where

kDmaz is the maximum wavenumber of any material in the multilayered slab.
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B1TMAX must be great enough to al!ow fo, r convergence of the integral. IVI'-

MAX = 50.0 typically. To check for convergence, HFMAX can be increased

until the impedance matrix elements are stable.

IC,ALC = indicatr for performing frequency sweep computations.

- 0 implies do not perform a frequency sweep c(miputatioi.

- 1 implies perform a frequency sweep computation rising standard quad-

ratic interpolation.

= 2 implies perform a frequency sweep cornputation using improved quad-

ratic interpolation. This should never be done if a iPO basis function is tised

(IMF = 1) or if a surface wave basis function is used (IMS 1).

4.2.2 READ 2: Frequmiecy

READ 2 defines F - the frequency in Mllz at which any pattern or current

distribution calculations are made. If a freuiency sweep c(mipt tation is desired,

then the frequencies are determined via READ 6B. Htowever, REAl) 2 will be

executed in either case.

4.2.3 READ 3: Material Parameters

Note that READ 3A will be executed only if IGMTYP - 2 and that I0EAl)

3B and 3C will be executed only if IGNITYP = 3 (see READ 1). REAI) 3A

determines the material parameters of the half space if IGNITYI - 2.

ElI -- relative real part of perinit4ivi ty in material half space.

TDEI 1 loss tangent of perinittiviItv in malerial half space.

U RI relative real part of plermna l)lity iin material half space.

TDMI = loss tangent of l)er1ea.hility in mat erial half space.
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READ 3B and 3C determine the material parameters of the two-layered slab

3 if IGMTYP = 3.

ERI = relative real part of permittivity in layer k 1.

TDE1 = loss tangent of perrmittivity in layer k =1.

URI = relative real part of permeability in layer k 1.

I TDM1 = loss tangent of permeability in layer k = 1.

3 TI = thickness in meters of layer k = 1.

ER2 = relative real part of permittivity in layer k = 2.

TDE2 = loss tangent of permittivity in layer k = 2.

UR2 = relative real part of permeability in layer k = 2.

N TDM2 = loss tangent of permeability in layer k = 2.

3 T2 = thickness in meters of layer k = 2.

3 4.2.4 READ 4: Sheet Impedance

READ 4A defines the constant values of the sheet impedance Zs(x) as follows:

ZSO = "background" constant sheet impedance ZSO. If the user is interested in

3 a case where Zgso --4 co, such as scattering from a resistive half plane in free

space, then simply set ZSO equal to a very large number. Experience has

I shown that ZSO = 1025 gives good results in these cases.

3 ZS = constant value of the sheet impedance (not ZSO) in the range where the

sheet impedance is constant, but not equal to ZSO. For example, set ZS -

I ZA for the sheet impedances shown in Figures 3(b), 3(c) and 3(d).
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The width where ZS(x) is constant (not ZSO) is taken to be finite if only pulse

basis functions are used (see Figure 6(a).) This width is taken to be semi-infinite

going to i-ifinity in the +;i - direction if a PO or surface wave basis function is

used (see Figures 6(b) and 6(c).)

READ 4B can be used to define an impedance taper region. An impedance

taper can account for a non-constant sheet impedance like that shown in Figure

3(d). ZSX can allow for only one sheet impedance taper. READ 4B defines the

following:

ITP = indicator for an impedance taper.

= 0 implies do not include an impedance taper.

= 1 implies include a constant impedance taper.

= 2 implies include a linear impedance taper.

= 3 implies include an exponential impedance taper.

= 4 implies include a cosine impedance taper.

ZA = impedance value at the start of the impedance taper. ZA will be the value

of a constant impedance taper if ITP = 1. Note that ZA input via this

READ statement is not to be confused w'th Z 1 of Figures 3 and 6.

ZB = impedance value at the end of the impedance taper.

WD1 = width in meters of the impedance taper region.

If ITP > 0 then there will be an impedance taper region. This impedance taper

region starts at x = -- WD1 and extends to x --- 0. If ITI -- I then tle sheet

impedance will have a constant value of ZA over ithis entire range of x. If IT1) 
7

2,3 or 4 then the sheet impedance will have value ZA at x --- -1VDI and value
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ZB at x = 0. In these cases, tile sheet impedance will taper from ZA to ZB either

linearly, exponentially or cosinusoidally, depending on ITP.

4.2.5 READ 5: Basis Function Description

READ 5 defines the layout of the basis function expansion through the use of

the parameters explained below.

WD2 = width of constant ZS where pulse basis functions will be used. This

parameter has meaning only if IMP = 1. If IMP = 1 then pulse basis

I functions are placed from x = 0 to x = WD2.

SGXW maximum segment size of pulse basis functions in minimum wavelengths

of a layer. SGXW should not exceed 0.25 but has typically been chosen as

* 0.1 or less.

3 X = the x value in meters where the physical optics basis function starts. X I

has meaning only if IMF = 1. X1 is analogous to xpO of Equation (2.43)

I and is typically chosen as 0.0 or WD2.

3 X2 = the x value in meters where the surface wave basis function starts. X2 has

meaning only if IMS = 1. X2 is analogous to -S of Equation (2.46) and is

I typically chosen as 0.0 or WD2.

Note that if an impedance taper region is specified (ITP > 0 in READ 4B) then

pulse basis functions are automatically placed over this region, i.e., if ITP > 0

then pulse basis functions are placed from x = --.WDI to x := 0. For pulse basis

5 functions to be placed over the impedance taper region, IMP need not be set be set

to 1 in READ 1. The width of these pulse basis functions over \,ND I is determined

by SGXW.
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4.2.6 READ 6: Electromagnetic Calculationis

Note that REAl) 6A is executed only if ICALIC -0 and REAl) 6B3 is executed

Only if 1CALC -- I or 2 (see READ 1). SimilarlY, REAl) WCis executed only if WiNT

-3 in READ 6A. READ 6iA specifies whiether a pattern o)r at current, distribution is

to be computed. It also defines the pattern using the paramneters exp~lained1 below.

IIPAT =-indicator for computing either a pattern or a current distribution.

0 implies (10 NOT compute a. Iattern or a current (istrilmition.

I implies cornpu~te a lbackscatter p~atternl.

2 implies compute a 1istatic scattering Ipalterrl.

3 implies compute a current (list ribution (see RELA I) 6C).

DPI- the angle increment for p~attern compIutationls. If IPAT1' I or 2 tlie

scattering pattern wvill b~e cormputed every DPIII (degrees.

PfIUSTr the angle of the incident plane wave for lbistittic scattering patterns or

current (listributiOns.

READ 6B defines a. frequenc-Y sweep computation uising the piarmeters ex-

p~lainedl below.

FIC I =beginning frequencY in Nl1lz for a frequency sweep computation.

FMC2 =ending frequency in Mhz for a frequency sweep complutationl.

DFZ =frequiency step size in M liz for calculating time impedance mnatrix.

DIFC =frequency step size ini NIlilz fo~r calcumlatintg the scatt ered field.

PHIN ii ngle of the incident field in (degrees.

[PHS(' angle of the scattered field Mi degrees.
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1

If standard interpolation is used (ICALC = I in READ 1) then the frequency step

size DFZ in MHz is typically set to .fA/ 2 where
300

AN = 2-MHz.

3Here L is the width over which pulse basis functions are placed. Assuming that

pulse basis functions are used (IMP = 1 in READ 1), then L = WD2 if no ifled-

ance taper is used (ITP = 0 in READ 4B) and L = WD1 + WD2 if an impedance

taper is used (ITP > 0 in READ 4B). If improved interpolation is used (ICALC -

12 in READ 1) then DFZ can be increased to 41f,1 or more. Recall that improved

3interpolation should not be used if either a PO or surface wave basis function is

used.

READ 6C defines the current distribution via the parameters explained below.

3XI the initial value of x in meters for the current distribution.

XF the final value of x in meters for the current distribution.

XS the step size of x in meters for the current distribution.

3If a current distribution is specified (IPAT = 3 in READ 6A) then the current

induccd by i oae iiirkl. frorn ,j 7- PHBST is computed. The cuirent

distribution is computed from x = XI to x z XF at increments of XS.

I
I
1
I
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CHAPTER V

SUMMARY

This report has described the integral equation and Im solution fo)r two,-

dimensional TM scattering by a variable sheet impedance in a multilayered slab.

An integral equation was derived for the unknown surface current on the scat-

tering portion of the sheet. impedance. The moment method was applied to the

integral equation to obtain an approximate expansion for the uIIkno(wI surface

current. Simple expressions for the impedance matrix and voltage vector elements

used in the MM solution were obtained. The far field of the basis functions were

determined asymptotically so the far zone scattered field could be obtained analyt-

ically. Numerical results were presented and some results were compared against.

measured or previously calculated results.

One important feature of this NM solution is that the impedance matrix

elements and the far zone fields depend upon spectral functions specific to the

geometry of the multilayered slab. Thus, different spectral functions can be used

to apply the MM solution to different multilaYered slab geometries. Spectral func-

tions were obtained fopr a sheet impedance ]ocal erl in a A' 2 layered slab, ,it

a material half space, or in free space. i\ user-o)riented cotiipiter (,(le was writ-

ten to implement this NINI solution and can a cc u iit, for the three geonetries j ist

mentioned. A user's manual fo~r this code was given in (1hapter IV.

Future work in this area might itlude the c'miult.atin (of transverse electric
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(TE) scattering by the same geometries analyzed here. This soluti,,n will result

3 in different spectral functions and will require different basis function expansions.

Furthermore, the volume equivalence theorem applied to the thin dielectric slab

may not be valid for near edge-on incidence, and this problem may have to be

treated separately.

Another idea for further study is a more complete analysis of the surface wave

poles and the surface wave basis functions. The ,M solution presented in this

report only used surface wave basis functions when the sheet impedance was in free

space. If the dominant surface wave poles can be determined for more complicated

n layered geometries, then their corresponding surface wave basis functions can be

included in the MM current expansions for these geometries.

I
I
I
I
I
I
I
I
I
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APPENDIX A

THE DETERMINATION OF F(3) FOR SEVERAL

MULTILAYERED SLAB GEOMETRIES

This appendix derives the function F(3) of Equation (2.29) for the two layered

geometry shown in Figure 19. Equations (2.22) and (2.25) are used to express the

electric field and the tangential magnetic field. The conditions on these fields,

listed in Section 2.4, are enforced and the function F(1 3) is solve( for. From this

result, the function F(i3 ) is also found for the two special liniting cases shown in

Figure 20.

The electric field is expressed as

E,(x,, ) % 1 [1 (,) l.s Hk( )fl e ,.j 3 , d1 (I.1)

and the tangential magnetic field is expressed as

lk~z(rz) -'o J j (I)e- '
Ykz Bk(fl) Oz P3 "d1t3 (-.2)

for k=0,1,2,3. Yk is given )y

V Till k .2 ,iwhere Fie~ k)

The first condition ol the fields is fle radiat ,,n colndition as r - oc. This

implies that there are only upward travelling waves in region k 0 and o lll"
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m (0, 0)I
3 region: k = 0

Sz =T,

(,U IE1 ) z

region: k = 1 Tsix
S I .. .. 1111111 ....... ... , , , , i ........... I1 , , ,,

2 ( ',E2)

region: k = 2 T2

(M 0', E o)

region: k = 3

m Figure 19: Sketch of two layered geometry containing sheet impedance ZS(x).

3 downward travelling waves in region k = 3. To enforce these properties, it must

be true thatm 
B°(3) = 0 and A3(i3) = 0. (A.4)

The second condition is continuity of the tangential electric field across each

interface. Enforcing this condition yields the following:

m [A°(3) e- YOTl 1 - [A(3) e- 1T1 ± B'(0) eY 1T1 ] - 0 (A.5)

' [An(0) + B (8)]- [A'(3) + B (0j)] =0 (A.6)

3 [4~A(3) e72T2 ± B2('8) -- 2 T2  3 B(03) e-Y3 T2 j-(A7

The third condition is continuity of the tangential magnetic field across each

interface except the z = 0 interface. Enforcing this condition yields the following:

I -O [AO(OT)e-oT I + .Y [A'(0) e71 T()- B] (0)eT,]j 0 (A.8)
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'Y2 [(13) e- 272 - B 2 (3) e 7~2T2] L3 B (0) F 3 0. (Y3.9)
J1wI 2

The fourth and final condition is discontinuity of the tangential magnetic field,

by the total surface current pro(iced by J,, across the z 0 0 interface, i.e.,

Sx [M- Hn 1] n (119)

where k and k + I represent the regions immediately above and below the z ()

interface respectively, and JI is the total surface current produced by Jn. Since

J1 contains only a - directed component, then for the K 2 layered slab this

con(dition becomes
,I -II 2  -s f (14.11)

HIZ - 1IX ?1i

The (y - l)olarized) surface current produced by J,,, at the z = 0 interface, is

EA(x, 0)_ (,0(1 ).ls- E ( x,() J 4- Z ' (A .1 2)

Zs(,)Zso

Substituting Equations (2.20) and (A.1) into Equation (A.12) yields

+ 1 +00

Enforcing the fourth condition by substituting Equations (A.2) and (A.13) into

(A.11) yields

.'I A' J3 - 0 1 r2 A(3 B' (3

- ,, + [A ( )+ B'( 13) (A.,.4)
27r .50

Equations (A.5) - (A.9) and (A..14) form a set of six equations that can )e

solved for the six unknown functions, A/(), .4 ,(/3). B: (A3), 42,(p3). IJ(/), 11d

B3(0). Of primary interest is the expressiotn For the electric field at, the z )

interface

r4(x, 0) ,00(,) J "3 d3. (1.15)
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Noting that regions k = 0 and k = 3 are the same media and solving Equations

3 (A.5) - (A.9) and (A.14) for A'(fl) and B'(0), Equation (A.15) becomes

n 27 o

i where,

F(3) L170 sinh(T1 7) + yo71 cosh(7 1T1 )j.., , .o r, l sin h ( -yjT j) + [ . , + -1 ,l '1- I - o h ( , )
S(A. 1 7)

I and
C = 72 t2 0 coshi(-Y72 2) +- /o 2  sinh(t 2T2 )(

ZS 0  jwj- 2 [P210 sinh(-Y2 T2 ) - /072 cosh(-72T 2) j
Now consider the geometry sketched in Figure 20(a). The geometry is a, sheet

impedance at z = 0 and bordered by free space (jtL,c 0 ) for z > 0 and material

medium (,.tl,Ej) for z < 0. This geometry can be considered a. limiting case of

3 the two layered geometry of Figure 19 where T1 -* 0 and T2 -- oc. Since region

k = 2 of Figure 19 becomes region k = 1 of Figure 20(a) then the k = 2 subscripts

I will become k = 1 subscripts. Performing these limiting operations on Equations

(A.17) and (A.18) it is obtained that

F(O ) - 1 ._1._ __ _ (A.19)

for the geometry of Figure 20(a). If the sheet impedance is entirely in free space,

as in Figure 20(b), then in Equation (A.19), tL1 -- pl0 and 71 - -Y0. For this case,

3 the function F(fl) is given by

'(3j) - 2 __ (A.20)I-s Jw/10

This ends the discussion on the calculation of F(3).
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region: k = 0 Zs(x)
z = 0 x,
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)(JA~ if6 1 ) y

region: k =1 /

/ /
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region: k = 0 Zs(x)
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(JA o ,Eo) y

region: k = 1
(b)

Figure 20: (a) Sketch of sheet imlpedance on a material half space. (b) Sketch of
sheet impedance in free space.
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APPENDIX B

THE DETERMINATION OF FAR ZONE FIELDS FOR SEVERAL

MULTILAYERED SLAB GEOMETRIES

This appendix finds the far zone electric field of current expansion function

Jm radiating in the presence of the multilayered slab. The electric field expression

of Equation (2.22) for region k = 0 is evaluated asymptotically for p --, 00 iising

the method of stationary phase. The result is given for the three geometries illus-

trated in Figures 19 and 20. The field is given only for region k = 0 above the

multilayered slab, but by a similar approach, the field below the multilayered slab

can be obtained.

The first order asymptotic approximation to the integral 1181

I(A) = ff(t) dt (/3.)

for A -- oo and 0'(c) = 0 with a < c < b and c not too close to a and b, is
2r cM()e sgn V,"(c)

1(A) f (c) e A Vc) e3 s"i(( (B.2)

Employing Equations (2.22) and (A.4), the field for region k = 0 above the

multilayered slab is
E0o(x, z) = ,,10 ) e- jx (,13. 3.)

To get this expression in the form of Equation (B.1) the following substitutionns

are made:

X = p cos$
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z -- sin¢

Yuko --2  62 -

yielding

1+01 0"L COS 0 k2-i72 ri)j' ,,JP, 0) = flo ...)

Using Equation (B.2) with

t

A p

a -q'-oc

b -* +oo

f(t) A -

i(t) -~13 co-sq -- -/k 32 sinq$

C -4 3sp =- ko cos

where ,3,p is the stationary phase point, it is obtained that

,,o --jk~p

E%(p,¢) Pn(4)-- (1P.5)

where

Pm() =A (- k0 cos 0) 27rk sinq0e 4. (B.6)

Note that the spectral function A",(3) is the only term in the expression for E",

that depends on the multilayered slab geometry. This nakes it, straightforward

to find the far zone field of a basis finction radiating in Hihe presence of a new

multilayered slab geometry. The AO((3) corresponding to the new geometry must

be determined and then ins rt ed into, Equaticn (13.6).
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The function An()3) can be found by enforcing the conditions on the fields

given in Section 2.4 and following an approach similar to that outlined in Appendix

A. The result of this operation is that for the two layered geometry of Figure 19

M IIY +0 3 -2- L Y I s in hj I -i + _eP 1 C (.) s h ( Y I T ])
I l'r°(B.7)

where

1_+. 72 P2Y0 cosh(-Y2 T2 ) + P o-Y2 sinh(y 2T2 )(
ZSO jwP2  /27Y0 sinh(-Y2 T2 ) + /1072 cosh(y/2 T2 ) I (B.8)

The geometry of Figure 20(a) can be considered the limiting case of the two

layered geometry of Figure 19 where T1 --, 0 and T2 -- oo. Since region k = 2

of Figure 19 becomes region k = I of Figure 20(a) then the k = 2 subscripts will

become k = 1 subscripts. Performing these limiting operations on Equations (B.7)

and (B.8) it is obtained that

AO()r (B.9)
M so + + __jj_

WtO + 3Wp, 1

for the geometry of Figure 20(a). If the sheet impedance is entirely in free space,

as in Figure 20(b), then in Equation (B.9), pL1 -- /to and -'1 -- yo. For tis case,

the function AOm() is given by

A 1 M- 27--(B.10)

To obtain a closed form expression for the far zone electric field above the mul-

tilayered slab, the function AO,( 13) is evaluated at f = i lp = -k cos 0. Ao,(03p)

is substituted into Equation (B.6), which is then substituted into Equation (B.5)

yielding a closed form expression for Er,, the far zone field of current expansion

function J, Em is then used in the evaluation of the voltage vector elements of

Equation (2.36) and for finding the total far zone scattered field. This ends the

I discussion on evaluating Em.
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